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Abstract—This paper proposes a method for automating detec-
tion and segmentation of archaeological structures in underwater
environments. Underwater archaeologists have recently taken
advantage of robotic or diver-operated stereo-vision platforms
to survey and map submerged archaeological sites. From the
acquired stereo images, 3D reconstruction can be performed to
produce high-resolution photo-mosaic maps that are metrically
accurate and contain information about depth. Archaeologists
can then use these maps to manually outline or sketch features
of interest, such as building plans of a submerged city. These
features often contain large rocks that serve as the foundation
to buildings and are arranged in patterns and geometric shapes
that are characteristic of human-made structures. Our proposed
method first detects these large rocks based on texture and
depth information. Next, we exploit the characteristic geometry
of human-made structures to identify foundation rocks arranged
along lines to form walls. Then we propose to optimize the
outlines of these walls by using the gradient of depth to seek
the local minimum of the height from the seafloor to identify
the ground plane at the base of the rocks. Finally, we output
contours as geo-referenced layers for geographic information
system (GIS) and architectural planning software. Experiments
are based on a 2010 stereo reconstruction survey of Pavlopetri,
a submerged city off the coast of Greece. The results provide
a proof-of-concept for automating extraction of archaeological
structure in underwater environments to produce geo-referenced
contours for further analysis by underwater archaeologists.

I. INTRODUCTION

The field of underwater archaeology has seen recent ad-
vances in photogrammetric survey techniques that take advan-
tage of robotic or diver operated stereo-vision platforms to
map submerged archaeological sites. The advantage of these
platforms is that large areas can be mapped more efficiently
than with traditional methods that require divers to manually
measure submerged structures. The stereo images gathered can
be used to perform 3D reconstructions of submerged sites,
resulting in high-resolution photo-mosaic maps with recovered
depth data. These metrically accurate reconstructions allow
for further mapping and measurement of the submerged site
without the need for repeated dives or vehicle deployments [1].
Using these reconstructions, archaeologists typically trace or
manually sketch city or building plans of the site. An example

Fig. 1. Hand-drawn building plans produced in [1] during a survey of
Pavlopetri, a submerged city off the coast of Greece.

of such an archaeological plan produced in [1] appears in
Fig. 1.

The features of interest to underwater archaeologists often
contain large rocks distinct from the surrounding environment
that serve as the foundation to buildings and are arranged
in geometric shapes that are characteristic of human-made
structures. In this paper, we propose a method for exploiting
these characteristics to automate detection and segmentation
of structural features within these sites, resulting in vector-
ized contours of submerged archaeological structures. The
proposed method is developed and tested with photo-mosaics
and depth information obtained through stereo reconstruction
of data gathered with a diver rig during a 2010 survey of
Pavlopetri, a submerged city off the coast of Greece [2]. The
output is a geo-referenced contour of detected archaeological
structures that can be layered on top of the original photo-
mosaic map for use in geographic information system (GIS)
or architectural planning software.

This paper is organized as follows: Section II provides
background and prior work on detection and segmentation
of features in archaeological sites. Section III develops our
proposed technical method for the specific application of
underwater archaeological sites. Section IV presents experi-



mental results based on a 2010 survey of the submerged city
of Pavlopetri, Greece, and Section V gives a discussion of
these results. Finally, Section VI concludes with suggestions
for future work.

II. BACKGROUND

Prior work on automating detection of structures in archae-
ological sites has mainly been applied to large-area terrestrial
sites mapped with remote sensing platforms. Lambers and
Zingman used large-area satellite images to detect regions
with a high likelihood of containing features of interest to
archaeologists based on texture contrast and geometric cues
such as straight line walls meeting at corners [3] [4]. D’Orazio
et al. [5] developed a Modified Variance Analysis method to
detect lines characteristic of archaeological sites from satellite
images. Luo et al. [6] extract circular structures from Google
Earth images to point out qanat shafts for agriculturalists.
These methods take advantage of the geometric properties
characteristic of archaeological sites, but they do not incorpo-
rate depth information and are not applied to the same spatial
scales that we are working with.

More generally, rock detection has been studied for au-
tonomous planetary science [7]. Golumbek [8] exploited shad-
ows produced by rock formations to identify and characterize
rocks on Mars. Dunlop et al. [9] and Niekum and Wetter-
green [10] both integrated multiple properties such as texture,
size, and shape to detect and segment rocks on Mars. However,
the terrain of Mars features a smooth sand environment
with rocks that cast consistent shadows, whereas underwater
environments are often rocky or coarse and have directionally
dependent shadowing effects [11].

In underwater environments, relevant work involves clas-
sification of sea-bottom terrain [12], allowing for detection
of features such as rocks, which are useful for identifying
building foundations at archaeological sites. Methods specifi-
cally applied to detection of submerged archaeological objects
were developed by Moroni et al. [13], based on optical and
acoustic data. Douillard et al. performed segmentation of
undersea terrain on point clouds obtained through 3D laser
line imaging [14] [15]. In contrast, the work presented in this
paper focuses on optically derived measures gathered with a
stereo-vision platform.

III. METHODOLOGY

Our proposed method takes as input a high-resolution photo-
mosaic map reconstructed from a stereo-vision survey, as well
as depth data recovered from the 3D stereo reconstruction.
Figure 2 shows a high-resolution photo-mosaic map of a
rectangular room reconstructed from stereo-vision imagery
gathered during a survey of Pavlopetri, Greece in 2010.
Figure 3 shows a depth relief recovered through the same 3D
reconstruction. Our proposed method then has several steps
described as follows:

Fig. 2. High-resolution photo-mosaic map of a rectangular room reconstructed
from stereo-vision imagery gathered during a survey of Pavlopetri, Greece in
2010.

Fig. 3. Depth relief recovered through a 3D reconstruction from stereo images.

A. Initial Segmentation

To initially segment the images, we compute superpix-
els using the method of Simple Linear Iterative Clustering
(SLIC) [16] [17]. Superpixels result in an over-segmentation of
the image that provides initial segment contours. An example
of a typical superpixel segmentation of the input photo-mosaic
is shown in Fig. 4. This is a good initial segmentation, as the
contours are closed and the scale of each segment is on the
same scale as that of the large foundation rocks. However, the
contours follow lines of contrast and do not always produce
accurate region boundaries. For example, when there is dark
growth covering part of a rock, the superpixel segments the
rock into light and dark sections of the same rock. Therefore,
optimization of these contours is required to achieve a more
accurate segmentation.



Fig. 4. Zoomed in section showing an example of a typical superpixel
segmentation of the input photo-mosaic to show the size and shape of initial
contours.

B. Texture Classification

Next we use a supervised texture classification method to
classify each superpixel as either a rock or non-rock segment
using the texture classification method presented by Varma and
Zisserman [18], which is based on the rotationally invariant
Maximum Response-8 (MR8) filter bank [19] and textons,
which are defined by Leung and Malik [20] as the centers
of clustered filter responses. This method has two stages: the
learning stage and the classification stage.

As outlined in Fig. 5, the first step of the learning stage
is to create a texton dictionary of different textures found
among both classes. To create the dictionary, input images
are convolved with the MR8 filter bank, which includes six
orientations of edge and bar filters at three different scales,
with the maximum response selected at each scale, a Gaussian
filter, and a Laplacian of Gaussian filter. This produces 8
filter responses per pixel. Using images across both rock and
non-rock classes, pixel responses are aggregated and clustered
using k-means clustering [21] to obtain a dictionary of 16 8-
dimensional textons based on cluster centers.

Fig. 5. Outline of the first step in the learning stage for texture classification.
Input images are convolved with the MR8 filter bank. Eight-dimensional filter
responses for each pixel are aggregated and clustered using k-means. The
cluster centers of filter responses make up a texton dictionary of textures
from both classes.

The next step is to learn models of rock and non-rock classes
based on labeled training images and the generated texton
dictionary. As outlined in Fig. 6, for each training image,
a histogram of texton frequencies of the training image is
computed by comparing each 8-dimensional pixel response
to a texton in the dictionary according to Euclidean distance
nearest neighbor, and adding a count for each pixel nearest to
each texton in the dictionary. Note since training and testing
images are different sizes, histograms are normalized to sum
to 1. The resulting histogram of each training image provides
a model for the labeled image class.

Fig. 6. Outline of the second step in the learning stage for texture classifi-
cation. The filtered responses of each pixel in a training image are compared
to textons in the texton dictionary. A histogram is created from counts of the
closest texton to each pixel and the histogram is normalized to sum to 1. The
resulting histogram acts as a single model for the labeled class of the training
image.

During the classification stage, a histogram is similarly
computed for each testing image, and compared to the class
models produced through training based on Euclidean distance
nearest neighbor in order to determine which model the test
image is closest to and, subsequently, which class the test
image belongs to.

We trained our classifier on 80 rock and 80 non-rock images,
and achieved 90% accuracy for classifying rocks and 88%
accuracy for classifying non-rocks on a test set of 60 labeled
images per class.

C. Integrating Depth Information

As another metric of rock classification, we note that the
depth information provides an important additional cue of
structure along the seafloor. Figure 7 shows the depth profile
of a wall segment, where it is clear that the larger rocks
forming the wall stand out against the ground plane. However,
absolute depth cannot be used directly since the elevation of
the ground plane changes over large areas; instead we note that
the gradient of the depth, shown in Fig. 8 also distinguishes
the wall segment from the ground plane, so we set a threshold
on the average depth gradient across a segment required to
classify the segment as a structurally significant rock. Figure 9
shows the segmentation of significant rocks according to both
texture and depth gradient for a submerged rectangular room
surveyed at Pavlopetri. The combination of visual and depth



Fig. 7. The depth contour here highlights large rocks that form a segment of
a wall from the rectangular room shown in Fig. 2.

Fig. 8. Taking the gradient of the depth over the same segment shown in
Fig. 7 can also provide an important cue for identifying foundation rocks.

Fig. 9. Contours of all superpixels labeled as rocks using texture classification
integrated with depth information.

modality provides a distinction between large rocks that have
potential to serve as building foundation, and rocky or coarse
regions of the seafloor.

D. Integrating Geometry

To identify potential archaeological features among de-
tected foundation rocks, we note that man-made structures

Fig. 10. Best-fit lines computed by RANSAC given detected rocks.

often have distinct geometric properties. For example, walls
fall in straight lines and meet at corners. To exploit this
straight-line geometry, we employ Random Sample Consensus
(RANSAC) [22] to identify lines of best-fit among segments
classified as rocks. Figure 10 shows three best-fit lines detected
in the rectangular room. We traverse these lines to identify
full structures, or clusters of rocks, by including all identified
rocks along the line. From each rock on the line, we search
connected superpixels to attach to the cluster, until we reach
a superpixel not identified as a rock. We eliminate outliers by
setting a distance threshold between consecutive rocks in the
cluster.

E. Refining Contours

Given a single structure, or cluster of rocks, we seek to
improve the contours around rocks from the initial superpixel
segmentation in order to encompass the entire rock. Figure 11
shows a sample depth profile of a single rock, from which
we can observe that the base of the rock tends to lie at
a local minimum height from the seafloor. To identify the
base, we search neighboring pixels to each pixel in the initial
contour and perform gradient descent along neighboring pixels
according to the height from the seafloor. We terminate when
gradient descent reaches a local minimum or if the depth
gradient decreases below a threshold indicating that the ground
plane has been reached. This enables optimization of the initial
rock contours to more accurately segment foundation rocks
from the surrounding seafloor.

The output contour is exported to a GIS program or ar-
chitectural planning software and can be displayed on top of
the original photo-mosaic or on its own as a geo-referenced
contour layer.

IV. EXPERIMENTAL RESULTS

We tested the above proposed method with real data from
a 2010 field survey of Pavlopetri, Greece. For this dataset,



Fig. 11. Sample rock profile with start (green) and end (red) points of gradient
descent.

stereo images were gathered using a stereo-vision diver rig
platform. Stereo reconstruction was performed to obtain a
high-resolution photo-mosaic image of the survey area with
recovered depth data. Here we show results for a survey of a
rectangular room at the site.

Figure 12 shows the final clustered segmentation of indepen-
dent structures, or walls, found along the best-fit lines shown
in Fig. 10, prior to gradient descent, where each colored cluster
is identified as a separate wall. Figure 13 shows the final
wall contours after gradient descent is performed, showing that
bases of the rocks can be captured by seeking the minimum
height from the bottom near each rock region. Figures 14
and 15 show these results exported as vectorized contours for
visualization as geo-referenced layers in GIS software.

Fig. 12. Final clustered segmentation of independent structures, or walls, prior
to gradient descent, where each colored cluster is identified as a separate wall.

V. DISCUSSION

These results validate our methods as a proof-of-concept for
detecting archaeological structure in underwater environments.

Fig. 13. Final wall contours after gradient descent is performed, where each
colored cluster is identified as a separate wall.

However, there are some failure modes that could be improved
for better results. One failure mode of the initial rock detection
occurs in the case of lighter rocks, which are often mislabeled
as non-rock regions. The texture training method we use is
dependent on the training set and the diversity of the texture
such that the lighter rocks may resemble smooth or sandy non-
rock regions. To improve this, we propose adding additional
measures such as rock size or shape to identify potential rock
segments. Other methods of unsupervised learning may also
be explored to better classify rock regions.

Our methods do show some robustness to poorly fit lines
found along rock segments. For instance, the green line in
Fig. 10 extends past the lower wall. As we assume that rocks
belonging to the same wall are typically found close together,
we require that rocks along the wall cannot be a certain
distance apart from each other. Therefore, we can successfully
eliminate rocks at the top segment of the line from being
included in the wall. Future work will focus on increasing
this robustness for other cases such as neighboring walls. As
also seen along the green wall, a rock is included in the
detected wall of the interior room that most likely belongs
to the external wall, as the rocks of each wall are placed close
together.

To examine results of gradient descent, Fig. 16a provides the
initial contours of an identified rock region prior to gradient
descent. This shows a failure mode of the initial contour
scheme such that the superpixels are split across the same rock,
dividing segments between the lighter and darker portion of
the rock. Figure 16b shows a sample result of the same region
after gradient descent is used to expand contours from the
initial superpixels. This contour more completely captures the
base of the rock as desired. Note that superpixels identified as
rocks that contain below a set number of pixels are eliminated.
Additionally, the gradient descent does not provide a smooth
contour according to the depth, so the resulting contours are



Fig. 14. Contours exported to GIS software and displayed as individual geo-referenced layers on top of the input photo-mosaic. The yellow layer represents
all detected rocks with potential to be foundation rocks. The red, green, and blue layers are individual layers representing detected structures, or walls.

Fig. 15. Contours of all detected rocks with potential to be foundation rocks are exported to GIS software and displayed as an individual geo-referenced
layer.



(a) Initial contours prior to gra-
dient descent.

(b) Expanded contours based on
gradient descent.

Fig. 16. Sample result of gradient descent showing expanded contours that
encompass the base of the rock.

based on a non-convex boundary around the points reached
by gradient descent, which provides a smoothed boundary.

VI. CONCLUSIONS & FUTURE WORK

While the expert knowledge of underwater archaeologists
in interpreting archaeological structure is essential, tasks such
as manually tracing this structure, or searching large areas to
detect features of interest is often tedious and time consuming.
Therefore, it is desirable to automate these tasks. These
results validate the proposed method as a proof-of-concept for
automating extraction of structure in underwater archaeolog-
ical sites from input photo-mosaics and depth information to
produce geo-referenced contours to be used as layers in GIS
and architectural planning software. Future work will focus on
optimizing rock contours, increasing robustness, and analyzing
computational complexity to increase efficiency of the system.
Ultimately, this could lead to the development of a complete
tool to assist underwater archaeologists in their work.
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